//第二次调用SuperType(),寄生组合继承基于Object
分类:巴黎人-前端

一篇文章理解JS继承——原型链/构造函数/组合/原型式/寄生式/寄生组合/Class extends

2018/08/02 · JavaScript · 继承

原文出处: 这是你的玩具车吗   

说实在话,以前我只需要知道“寄生组合继承”是最好的,有个祖传代码模版用就行。最近因为一些事情,几个星期以来一直心心念念想整理出来。本文以《JavaScript高级程序设计》上的内容为骨架,补充了ES6 Class的相关内容,从我认为更容易理解的角度将继承这件事叙述出来,希望大家能有所收获。

继承是面向对象编程中又一非常重要的概念,JavaScript支持实现继承,不支持接口继承,实现继承主要依靠原型链来实现的。

JavaScript 六种继承方式

2017/06/20 · JavaScript · 继承

原文出处: Xuthus Blog   

继承是面向对象编程中又一非常重要的概念,JavaScript支持实现继承,不支持接口继承,实现继承主要依靠原型链来实现的。

 前文说过,组合继承是javascript最常用的继承模式,不过,它也有自己的不足:组合继承无论在什么情况下,都会调用两次父类构造函数,一次是在创建子类原型的时候,另一次是在子类构造函数内部.子类最终会包含父类对象的全部实例属性,但我们不得不在调用子类构造函数时重写这些属性.请再看一次组合继承的例子:

一、理解对象
    1.创建
        ①构造函数   new Object
        ②对象字面量  var o = {};
    2.属性类型
        ①数据属性,对象属性有4个属性特征,默认都为true,可以通过Object.defineProperty()来修改属性特征
            a.[[Configurable]]  表示能否通过delete删除重新定义,能否修改属性的特征,能否修改为访问权属性
            b.[[Enumerable]]    表示能否通过for-in枚举
            c.[[Writable]]      表示能否修改属性的值
            d.[[Value]]         表示属性值
            eg:
                var o = {
                    name : [1, 2, 3]
                }
                Object.defineProperty(o, "name", {
                    configurable : false,       // 不能delete,不能修改,不能设置为访问器属性
                    enumerable : false,         // 不能枚举
                    writable :  false,          // 不能修改
                    value :     [100, 200]      // 把值变成[100, 200]
                });
                // for(var v in o.name) {
                    // alert(o.name[v]); // 100, 200, 能枚举
                // }
                alert(o.propertyIsEnumerable("name"));      // false
                // o.name = "li";
                // alert(o.name); // 100, 200 不能修改
                // delete o.name;
                // alert(o.name); // 100, 200 不能删除
        ②访问器属性,4个访问器属性特征,可以通过Object.defineProperty()来修改属性特征
            a.[[Configurable]]  表示能否通过delete删除重新定义,能否修改属性的特征,能否修改为访问权属性
            b.[[Enumerable]]    表示能否通过for-in枚举
            c.[[Get]]           表示在读取属性时调用的函数,默认为undefined
            d.[[Set]]           表示在设置属性时调用的函数,默认为undefined
            eg:
                var o = {
                    name : [1, 2, 3]
                }
                Object.defineProperty(o, "name", {
                    get : function () {
                        alert("get");
                    },
                    set : function() {
                        alert("set");
                    }
                });
                o.name = "li";      // set,设置name值时,自动调用o.set()
                o.name;             // get,读取name时,自动调用o.get()
        ③定义多个属性 Object.defineProperties()来同时定义多个属性
            eg:
                var o = {}
                Object.defineProperties(o, {
                    name : {
                        configurable : false,
                        value : "zhang"
                    },
                    age : {
                        get : function () {
                            alert("get");
                        },
                        set : function() {
                            alert("set");
                        }
                    }
                });
                alert(o.name);          // zhang
                o.age;                  // get
                o.age = "li";           // set
        ④读取属性的特征    Object.getOwnPropertyDescriptor(objectName, propertyName)
            eg:
                var o = {}
                Object.defineProperties(o, {
                    age : {
                        get : function () {
                            alert("get");
                        },
                        set : function() {
                            alert("set");
                        }
                    }
                });
                var descriptor = Object.getOwnPropertyDescriptor(o, "age");
                for(var v in descriptor) {
                    alert(v + " = " + descriptor[v]);       // 弹出访问器属性的4个属性特征
                }
二、创建对象
    1.工厂模式         
        ①抽象了创建对象的具体过程
            eg:
                function createObject (name, age) {
                var object = new Object();
                object.name = name;
                object.age = age;
                object.sayName = function () {
                    return object.name;
                }
                return object;
            }
            var p1 = createObject("zhang", 23);
            var p2 = createObject("li", 33);
            alert(p1.sayName());        // zhang
            alert(p2.sayName());        // li
            // 无法识别p1和p2
            alert(p1);                  // [object Object]
            alert(p2);                  // [object Object]
        ②弊端     没有解决对象识别的问题
        ③解决方法   构造函数模型
    2.构造函数模式
        ①创建模式
            eg:
                function Person(name, age) {
                    this.name = name;
                    this.age = age;
                    this.getName = function () {
                        return this.name;
                    }
                }
                var p1 = new Person("zhang", 34);
                var p2 = new Person("li", 23);
                alert(p1.getName());        // zhang
                alert(p2.getName());        // li
                alert(p1 instanceof Person);        // true
                alert(p2 instanceof Person);        // true, 解决了工厂模式的对象识别问题
        ②问题 每个方法都要在每个实例上创建一遍,从而形成不同的作用域链,从而导致不相同
            eg: alert(p1.getName == p2.getName);        // false
            我们也可以将方法部分提取到构造函数之外,但这样就没有什么封装性可言了。
            eg:
                function Person(name, age) {
                    this.name = name;
                    this.age = age;
                    this.getName = getName;
                }
                function getName () {
                    return this.name;
                }
        ③解决方法   原型模型
    3.原型模式
        ①创建模式   原型对象(构造函数的prototype属性指向它)的好处:可以让所有对象实例共享它包含属性和方法
            eg:
                function Person(name, age) {
                    this.name = name;
                    this.age = age;
                }
                Person.prototype.getName = function () {
                    return this.name;
                }
                var p1 = new Person("zhang", 34);
                var p2 = new Person("li", 23);
                alert(p1.getName == p2.getName);    // true,解决了方法共享的问题
        ②理解原型  
                a.函数Person.prototype指向原型
                b.Person.prototype.constructor指回构造函数
                c.p1、p2的prototype指向原型,且可调用原型中的方法,用Person.prototype.isPrototypeOf(p1)判断,也可以用Object.getPrototypeOf(p1)来获取原型
                d.我们可以用原型访问属性的值,但是不能通过实例重写原型的值,因为对象实例的值会屏蔽原型属性的值。当我们用实例对象重写了原型中的值,只有删除实例对象的值,才能访问原型属性的值。
                e.同样我们可以通过[实例.hasOwnProperty(propertyName)]来检测实例是否定义了自己的属性值
                    eg:
                        function Person() {}
                        Person.prototype.name = "zhang";
                        Person.prototype.getName = function () {
                            return this.name;
                        }
                        var p1 = new Person();
                        alert(p1.name);     // zhang
                        p1.name = "li";
                        alert(p1.name);     // li,实例中的值覆盖了原型中的值
                        alert(p1.hasOwnProperty("name"));   // 判断实例p1是否定义了自己的属性name的值,true
                        delete p1.name;     // 删除实例对象中的属性值
                        alert(p1.name);     // zhang
        ③原型与in操作符      
            a.无论是属性值存在于原型中,还是实例对象中都返回true
                eg:
                    function Person() {}
                    Person.prototype.name = "zhang";
                    Person.prototype.getName = function () {
                        return this.name;
                    }
                    // 判断是否为原型中的属性
                    function hasPrototypeProperty(object, propertyName) {
                        return propertyName in object && !object.hasOwnProperty(propertyName);
                    }
                    var p1 = new Person();
                    p1.name = "li";
                    alert(hasPrototypeProperty(p1, "name"));    // false
                    delete p1.name;
                    alert(hasPrototypeProperty(p1, "name"));    // true
            b.枚举所有可枚举的属性和方法,用Object.key(原型/实例)
                eg:
                    function Person() {}
                    Person.prototype.name = "zhang";
                    Person.prototype.age = 11;
                    Person.prototype.getName = function () {
                        return this.name;
                    }
                    alert(Object.keys(Person.prototype));   // 枚举原型中的属性和方法
                    var p1 = new Person();
                    p1.name = "li";
                    p1.getName = function () {}             // 枚举实例对象中的属性和方法
                    alert(Object.keys(p1));
            c.枚举所有的属性和方法,无论是否隐藏,用hasOwnPropertyNames(原型);
                eg: alert(Object.getOwnPropertyNames(Person));  // prototype,length,name
        ④更简单的原型方法
            a.源码
            eg: function Person() {}
                Person.prototype = {
                    constructor : Person,
                    name : "zhang",
                    getName : function () {}
                }
            b.问题    这样做可能会导致原型中的constructor属性的[Enumerable]为true,默认为false
            c.解决方法  用Object.defineProperty()方法重新定义
                eg: Object.defineProperty(Person.prototype, constructor, { enumerable : false});
            e.实例化对象一定要后于对象的定义完毕
        ⑤原型对象的问题        共享性,针对方法很好,针对属性也说的过去,但是针对那些包含了引用类型则不可
            eg:
                function Person() {}
                Person.prototype = {
                    constructor : Person,
                    friends : [1, 2]        // 引用类型
                }
                var p1 = new Person();
                var p2 = new Person();
                p1.friends.push(3);
                alert(p1.friends);
                alert(p2.friends);      // 同时返回1,2,3
        ⑥解决方法   取长补短,用构造函数模式定义属性,用原型模式定义方法
    3.组合构造模式和原型模式
        ①模式 取长补短,用构造函数模式定义属性,用原型模式定义方法
        eg:
            function Person(name) {
                this.name = name;
                this.friends = [1, 2]       // 引用类型
            }
            Person.prototype = {
                constructor : Person,
                name : "zhang",
            }
            var p1 = new Person("li");
            var p2 = new Person("wang");
            p1.friends.push(3);
            alert(p1.friends);      // 1,2,3
            alert(p2.friends);      // 1,2
        ②小问题        感觉构造函数和原型分离,破坏了封装性
        ③解决方法   使用动态原型模式
    4.动态原型模式(基本完美)      将原型中方法封装到构造函数中去
        eg:
            function Person(name) {
                this.name = name;
                this.friends = [1, 2];      // 引用类型
                if (typeof this.getName != "function") {
                    Person.prototype.getName = {
                        return this.name;
                    }
                }
            }
    5.寄生构造模式
        ①基本思想:创建一个函数(对象),该函数用来封装代码,然后返回函数(对象)
        ②模式
            eg:
                function Person(name, age) {
                    var o = new Object();
                    o.name = name;
                    o.age = age;
                    o.getName = function () {
                        return o.name;
                    };
                    return o;
                }
                var p1 = new Person("zhang", 34);
                alert(p1.getName());        // zhang
                alert(p1 instanceof Person);// false
        ③问题:由于实例对象和构造函数完全分离,因此无法识别对象
        ④案例:对于Array类型,我们可能在特殊情况在,对它进行添加属性和方法
            eg:
                function NewArray() {
                    var array = new Array();
                    array.push.apply(array, arguments);
                    array.addFun = function () {
                        return this.join("|");
                    }
                    return array;
                }
                var a1 = new NewArray("zhang", 22);
                alert(a1.addFun());     // zhang|22
    6.稳妥构造函数模型      没有公共属性,不使用this和new,只能定义获取值的方法
        ①用途:安全性
        ②源码
            eg:
                function Person(name, age) {
                    var o = new Object();
                    o.getName = function () {
                        return name;
                    }
                    return o;
                }
                var p = Person("zhang", 3);
                p.name = 'li';          // 无效
                alert(p.getName());     // zhang
        ③特点 函数名首字母大写、对象里只定义方法且不用this、实例化时不用new
        ④问题:由于实例对象和构造函数完全分离,因此无法识别对象
三、继承
    1.原型链
        ①将父类的实例赋值给子类的原型。因为父类的实例指向父类的原型,因此子类的原型也指向父类的原型。
        ②基本源码:
            eg:
                function SuperType(){
                    this.property = true;
                }
                SuperType.prototype.getSuperValue = function(){
                    return this.property;
                };
                function SubType(){
                    this.subproperty = false;
                }
                //继承了SuperType
                SubType.prototype = new SuperType();    // 将父类的实例赋值给子类的原型
                SubType.prototype.getSubValue = function (){
                    return this.subproperty;
                };
                var instance = new SubType();
                alert(instance.getSuperValue()); //true,调用父类SuperType的方法getSuperValue()
        ③别忘记了父类同样基础了祖类Object
        ③确定原型和实例的关系 用instanceof和对象.isPrototypeOf(实例)
        ④在子类重新或者添加父类的方法时,必须要在父类定义之后
        ⑤原型链的问题 原型链中不能存在引用类型
            eg:
                function SuperType(){
                    this.friends = [1,2];
                }
                function SubType(){}
                //继承了SuperType
                SubType.prototype = new SuperType();
                var s1 = new SubType();
                var s2 = new SubType();
                s1.friends.push(3);
                alert(s1.friends);      // 1, 2, 3
                alert(s2.friends);      // 同上
        ⑥解决方法   借用构造函数
    2.借用构造函数    对于原型链中包含引用类型,我们可以在子类的构造函中调用父类的构造函数
        ①源码案例, 即可以使用引用类型,还可以传递参数
        eg:
            function SuperType(name){
                this.name = name;
                this.friends = [1,2];
            }
            function SubType(){
                SuperType.call(this, "abc");        // 传递参数
            }
            //继承了SuperType
            SubType.prototype = new SuperType();
            var s1 = new SubType();
            var s2 = new SubType();
            s1.friends.push(3);
            alert(s1.friends);      // 1, 2, 3
            alert(s2.friends);      // 1, 2
            alert(s1.name);         // abc
        ③问题 由于是在构造函数中定义,所以方法不能够共享
        ④解决方法   组合继承
    3.组合继承(虽然两次调用了父类,但是基本ok)
        ①基本思想   将借用构造和原型链结合起来,借用构造定义属性,原型链定义方法
            eg:
                function SuperType(name){
                    this.name = name;
                    this.friends = [1,2];
                    if (typeof this.getName != "function") {
                        SuperType.prototype.getName = function () {
                            return this.name;
                        }
                    }
                }
                function SubType(name, age){
                    SuperType.call(this, name);             // 第二次调用父类
                    this.age = age;
                    if (typeof this.getAge != "function") {
                        SuperType.prototype.getAge = function () {
                            return this.age;
                        }
                    }  
                }
                //继承了SuperType
                SubType.prototype = new SuperType();        // 第一次调用父类
                var s1 = new SubType("zhang", 23);
                var s2 = new SubType("li", 24);
                s1.friends.push(3);
                alert(s1.friends);      // 1, 2, 3
                alert(s2.friends);      // 1, 2
                alert(s1.getName());    // zhang
                alert(s2.getAge());     // 24
    4.原型式继承
        ①基本思想   借助原型可以基于已有的对象创建新对象,从而不必自定义对象
            eg:
                function object(o) {
                    function F() {};
                    F.prototype = o;
                    return new F();
                }
                var person = {
                    name : "zhang",
                    friends : [1, 2]
                }
                var p1 = object(person);
                p1.name = "li";
                p1.friends.push(3);
                alert(p1.name);     // li
                alert(p1.friends);  // 1,2,3
                var p2 = object(person);
                p1.name = "wang";
                p1.friends.push(4);
                alert(p2.name);     // wang
                alert(p2.friends);  // 1,2,3,4
        ②ECMAScript 5发展了道格拉斯·克罗克福德的原型链继承,用Object.create()方法
            eg: 其中第二个参数和defineProperty()方法一致
                var person = {
                    name : "zhang",
                    friends : [1, 2]
                }
                var p1 = Object.create(person, {
                    name : {
                        value : "zhang"
                    }
                });
                p1.friends.push(3);
                alert(p1.name);     // li
                alert(p1.friends);  // 1,2,3
                var p2 = Object.create(person, {
                    name : {
                        value : "wang"
                    }
                });
                p1.friends.push(4);
                alert(p2.name);     // wang
                alert(p2.friends);  // 1,2,3,4
        ③问题:    原型链共享问题,引用类型
    5.寄生式继承
        ①思想 基于原型式继承,创建一个新函数对象,添加新方法
        eg:
            function object(o) {
                function F() {};
                F.prototype = o;
                return new F();
            }
            function createAnother(original) {
                // 继承原来的对象原型
                var clone = object(original);
                // 添加新方法
                clone.newFun = function () {
                    return "new function";
                }
                return clone;
            }
            var person = {
                name : "zhang",
                friends : [1, 2]
            }
            var p = createAnother(person);
            alert(p.name);      // zhang
            alert(p.newFun());  // new function
        ②问题 原型链共享问题,引用类型
    6.寄生组合式继承
        ①思想 在组合继承和原型式继承的基础上,不在子类的内部调用父类的构造函数,而是创建父类原型的副本
        eg:
            function object(o) {
                function F() {};
                F.prototype = o;
                return new F();
            }
            function inheritPrototype(subType, superType) {
                // 赋值proto为superType的原型
                var proto = object(superType.prototype);
                // 原型的contructor属性指向构造函数
                proto.contructor = subType;
                // superType的构造函数指向原型
                subType.prototype = proto;
            }
            function SuperType(name){
                this.name = name;
                this.friends = [1,2];
                if (typeof this.getName != "function") {
                    SuperType.prototype.getName = function () {
                        return this.name;
                    }
                }
            }
            inheritPrototype(SubType, SuperType);
            function SubType(name, age){
                SuperType.call(this, name);
                this.age = age;
                if (typeof this.getAge != "function") {
                    SuperType.prototype.getAge = function () {
                        return this.age;
                    }
                }  
            }
            var s1 = new SubType("zhang", 23);
            var s2 = new SubType("li", 24);
            s1.friends.push(3);
            alert(s1.friends);      // 1, 2, 3
            alert(s2.friends);      // 1, 2
            alert(s1.getName());    // zhang
            alert(s2.getAge());     // 24

1. 继承分类

先来个整体印象。如图所示,JS中继承可以按照是否使用object函数(在下文中会提到),将继承分成两部分(Object.create是ES5新增的方法,用来规范化这个函数)。

其中,原型链继承和原型式继承有一样的优缺点,构造函数继承与寄生式继承也相互对应。寄生组合继承基于Object.create, 同时优化了组合继承,成为了完美的继承方式。ES6 Class Extends的结果与寄生组合继承基本一致,但是实现方案又略有不同。

下面马上进入正题。

图片 1

原型链

原型链

首先得要明白什么是原型链,在一篇文章看懂proto和prototype的关系及区别中讲得非常详细

原型链继承基本思想就是让一个原型对象指向另一个类型的实例

function SuperType() { this.property = true } SuperType.prototype.getSuperValue = function () { return this.property } function SubType() { this.subproperty = false } SubType.prototype = new SuperType() SubType.prototype.getSubValue = function () { return this.subproperty } var instance = new SubType() console.log(instance.getSuperValue()) // true

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function SuperType() {
  this.property = true
}
SuperType.prototype.getSuperValue = function () {
  return this.property
}
function SubType() {
  this.subproperty = false
}
SubType.prototype = new SuperType()
SubType.prototype.getSubValue = function () {
  return this.subproperty
}
var instance = new SubType()
console.log(instance.getSuperValue()) // true

代码定义了两个类型SuperType和SubType,每个类型分别有一个属性和一个方法,SubType继承了SuperType,而继承是通过创建SuperType的实例,并将该实例赋给SubType.prototype实现的。

实现的本质是重写原型对象,代之以一个新类型的实例,那么存在SuperType的实例中的所有属性和方法,现在也存在于SubType.prototype中了。

我们知道,在创建一个实例的时候,实例对象中会有一个内部指针指向创建它的原型,进行关联起来,在这里代码SubType.prototype = new SuperType(),也会在SubType.prototype创建一个内部指针,将SubType.prototype与SuperType关联起来。

所以instance指向SubType的原型,SubType的原型又指向SuperType的原型,继而在instance在调用getSuperValue()方法的时候,会顺着这条链一直往上找。

添加方法

在给SubType原型添加方法的时候,如果,父类上也有同样的名字,SubType将会覆盖这个方法,达到重新的目的。 但是这个方法依然存在于父类中。

记住不能以字面量的形式添加,因为,上面说过通过实例继承本质上就是重写,再使用字面量形式,又是一次重写了,但这次重写没有跟父类有任何关联,所以就会导致原型链截断。

function SuperType() { this.property = true } SuperType.prototype.getSuperValue = function () { return this.property } function SubType() { this.subproperty = false } SubType.prototype = new SuperType() SubType.prototype = { getSubValue:function () { return this.subproperty } } var instance = new SubType() console.log(instance.getSuperValue()) // error

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function SuperType() {
  this.property = true
}
SuperType.prototype.getSuperValue = function () {
  return this.property
}
function SubType() {
  this.subproperty = false
}
SubType.prototype = new SuperType()
SubType.prototype = {
  getSubValue:function () {
   return this.subproperty
  }
}
var instance = new SubType()
console.log(instance.getSuperValue())  // error

问题

单纯的使用原型链继承,主要问题来自包含引用类型值的原型。

function SuperType() { this.colors = ['red', 'blue', 'green'] } function SubType() { } SubType.prototype = new SuperType() var instance1 = new SubType() var instance2 = new SubType() instance1.colors.push('black') console.log(instance1.colors) // ["red", "blue", "green", "black"] console.log(instance2.colors) // ["red", "blue", "green", "black"]

1
2
3
4
5
6
7
8
9
10
11
function SuperType() {
  this.colors = ['red', 'blue', 'green']
}
function SubType() {
}
SubType.prototype = new SuperType()
var instance1 = new SubType()
var instance2 = new SubType()
instance1.colors.push('black')
console.log(instance1.colors)  // ["red", "blue", "green", "black"]
console.log(instance2.colors) // ["red", "blue", "green", "black"]

在SuperType构造函数定义了一个colors属性,当SubType通过原型链继承后,这个属性就会出现SubType.prototype中,就跟专门创建了SubType.prototype.colors一样,所以会导致SubType的所有实例都会共享这个属性,所以instance1修改colors这个引用类型值,也会反映到instance2中。

 

2. 继承方式

上图上半区的原型链继承,构造函数继承,组合继承,网上内容比较多,本文不作详细描述,只指出重点。这里给出了我认为最容易理解的一篇《JS中的继承(上)》。如果对上半区的内容不熟悉,可以先看这篇文章,再回来继续阅读;如果已经比较熟悉,这部分可以快速略过。另,上半区大量借用了yq前端的一篇继承文章[1]。

首先得要明白什么是原型链,在一篇文章看懂proto和prototype的关系及区别中讲得非常详细

借用构造函数

此方法为了解决原型中包含引用类型值所带来的问题。

这种方法的思想就是在子类构造函数的内部调用父类构造函数,可以借助apply()和call()方法来改变对象的执行上下文

function SuperType() { this.colors = ['red', 'blue', 'green'] } function SubType() { // 继承SuperType SuperType.call(this) } var instance1 = new SubType() var instance2 = new SubType() instance1.colors.push('black') console.log(instance1.colors) // ["red", "blue", "green", "black"] console.log(instance2.colors) // ["red", "blue", "green"]

1
2
3
4
5
6
7
8
9
10
11
12
function SuperType() {
  this.colors = ['red', 'blue', 'green']
}
function SubType() {
  // 继承SuperType
  SuperType.call(this)
}
var instance1 = new SubType()
var instance2 = new SubType()
instance1.colors.push('black')
console.log(instance1.colors)  // ["red", "blue", "green", "black"]
console.log(instance2.colors) // ["red", "blue", "green"]

在新建SubType实例是调用了SuperType构造函数,这样以来,就会在新SubType对象上执行SuperType函数中定义的所有对象初始化代码。

结果,SubType的每个实例就会具有自己的colors属性的副本了。

传递参数

借助构造函数还有一个优势就是可以传递参数

function SuperType(name) { this.name = name } function SubType() { // 继承SuperType SuperType.call(this, 'Jiang') this.job = 'student' } var instance = new SubType() console.log(instance.name) // Jiang console.log(instance.job) // student

1
2
3
4
5
6
7
8
9
10
11
12
function SuperType(name) {
  this.name = name
}
function SubType() {
  // 继承SuperType
  SuperType.call(this, 'Jiang')
 
  this.job = 'student'
}
var instance = new SubType()
console.log(instance.name)  // Jiang
console.log(instance.job)   // student

问题

如果仅仅借助构造函数,方法都在构造函数中定义,因此函数无法达到复用

复制代码

2.1 原型式继承

核心:将父类的实例作为子类的原型

SubType.prototype = new SuperType() // 所有涉及到原型链继承的继承方式都要修改子类构造函数的指向,否则子类实例的构造函数会指向SuperType。 SubType.prototype.constructor = SubType;

1
2
3
SubType.prototype = new SuperType()
// 所有涉及到原型链继承的继承方式都要修改子类构造函数的指向,否则子类实例的构造函数会指向SuperType。
SubType.prototype.constructor = SubType;

优点:父类方法可以复用

缺点:

  • 父类的引用属性会被所有子类实例共享
  • 子类构建实例时不能向父类传递参数

原型链继承基本思想就是让一个原型对象指向另一个类型的实例

组合继承(原型链+构造函数)

组合继承是将原型链继承和构造函数结合起来,从而发挥二者之长的一种模式。

思路就是使用原型链实现对原型属性和方法的继承,而通过借用构造函数来实现对实例属性的继承。

这样,既通过在原型上定义方法实现了函数复用,又能够保证每个实例都有它自己的属性。

function SuperType(name) { this.name = name this.colors = ['red', 'blue', 'green'] } SuperType.prototype.sayName = function () { console.log(this.name) } function SubType(name, job) { // 继承属性 SuperType.call(this, name) this.job = job } // 继承方法 SubType.prototype = new SuperType() SubType.prototype.constructor = SuperType SubType.prototype.sayJob = function() { console.log(this.job) } var instance1 = new SubType('Jiang', 'student') instance1.colors.push('black') console.log(instance1.colors) //["red", "blue", "green", "black"] instance1.sayName() // 'Jiang' instance1.sayJob() // 'student' var instance2 = new SubType('J', 'doctor') console.log(instance2.colors) // //["red", "blue", "green"] instance2.sayName() // 'J' instance2.sayJob() // 'doctor'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
function SuperType(name) {
  this.name = name
  this.colors = ['red', 'blue', 'green']
}
SuperType.prototype.sayName = function () {
  console.log(this.name)
}
function SubType(name, job) {
  // 继承属性
  SuperType.call(this, name)
 
  this.job = job
}
// 继承方法
SubType.prototype = new SuperType()
SubType.prototype.constructor = SuperType
SubType.prototype.sayJob = function() {
  console.log(this.job)
}
var instance1 = new SubType('Jiang', 'student')
instance1.colors.push('black')
console.log(instance1.colors) //["red", "blue", "green", "black"]
instance1.sayName() // 'Jiang'
instance1.sayJob()  // 'student'
var instance2 = new SubType('J', 'doctor')
console.log(instance2.colors) // //["red", "blue", "green"]
instance2.sayName()  // 'J'
instance2.sayJob()  // 'doctor'

这种模式避免了原型链和构造函数继承的缺陷,融合了他们的优点,是最常用的一种继承模式。

function SuperType(name){

2.2 构造函数继承

核心:将父类构造函数的内容复制给了子类的构造函数。这是所有继承中唯一一个不涉及到prototype的继承。

SuperType.call(SubType);

1
SuperType.call(SubType);

优点:和原型链继承完全反过来。

  • 父类的引用属性不会被共享
  • 子类构建实例时可以向父类传递参数

缺点:父类的方法不能复用,子类实例的方法每次都是单独创建的。

function SuperType() {

原型式继承

借助原型可以基于已有的对象创建新对象,同时还不必因此创建自定义类型。

function object(o) { function F() {} F.prototype = o return new F() }

1
2
3
4
5
function object(o) {
  function F() {}
  F.prototype = o
  return new F()
}

在object函数内部,先创建一个临时性的构造函数,然后将传入的对象作为这个构造函数的原型,最后返回这个临时类型的一个新实例。

本质上来说,object对传入其中的对象执行了一次浅复制。

var person = { name: 'Jiang', friends: ['Shelby', 'Court'] } var anotherPerson = object(person) console.log(anotherPerson.friends) // ['Shelby', 'Court']

1
2
3
4
5
6
var person = {
  name: 'Jiang',
  friends: ['Shelby', 'Court']
}
var anotherPerson = object(person)
console.log(anotherPerson.friends)  // ['Shelby', 'Court']

这种模式要去你必须有一个对象作为另一个对象的基础。

在这个例子中,person作为另一个对象的基础,把person传入object中,该函数就会返回一个新的对象。

这个新对象将person作为原型,所以它的原型中就包含一个基本类型和一个引用类型。

所以意味着如果还有另外一个对象关联了person,anotherPerson修改数组friends的时候,也会体现在这个对象中。

Object.create()方法

ES5通过Object.create()方法规范了原型式继承,可以接受两个参数,一个是用作新对象原型的对象和一个可选的为新对象定义额外属性的对象,行为相同,基本用法和上面的object一样,除了object不能接受第二个参数以外。

var person = { name: 'Jiang', friends: ['Shelby', 'Court'] } var anotherPerson = Object.create(person) console.log(anotherPerson.friends) // ['Shelby', 'Court']

1
2
3
4
5
6
var person = {
  name: 'Jiang',
  friends: ['Shelby', 'Court']
}
var anotherPerson = Object.create(person)
console.log(anotherPerson.friends)  // ['Shelby', 'Court']

       this.name=name;

2.3 组合继承

核心:原型式继承和构造函数继承的组合,兼具了二者的优点。

function SuperType() { this.name = 'parent'; this.arr = [1, 2, 3]; } SuperType.prototype.say = function() { console.log('this is parent') } function SubType() { SuperType.call(this) // 第二次调用SuperType } SubType.prototype = new SuperType() // 第一次调用SuperType

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function SuperType() {
    this.name = 'parent';
    this.arr = [1, 2, 3];
}
 
SuperType.prototype.say = function() {
    console.log('this is parent')
}
 
function SubType() {
    SuperType.call(this) // 第二次调用SuperType
}
 
SubType.prototype = new SuperType() // 第一次调用SuperType

优点:

  • 父类的方法可以被复用
  • 父类的引用属性不会被共享
  • 子类构建实例时可以向父类传递参数

缺点:

调用了两次父类的构造函数,第一次给子类的原型添加了父类的name, arr属性,第二次又给子类的构造函数添加了父类的name, arr属性,从而覆盖了子类原型中的同名参数。这种被覆盖的情况造成了性能上的浪费。

  this.property = true

寄生式继承

寄生式继承的思路与寄生构造函数和工厂模式类似,即创建一个仅用于封装继承过程的函数。

function createAnother(o) { var clone = Object.create(o) // 创建一个新对象 clone.sayHi = function() { // 添加方法 console.log('hi') } return clone // 返回这个对象 } var person = { name: 'Jiang' } var anotherPeson = createAnother(person) anotherPeson.sayHi()

1
2
3
4
5
6
7
8
9
10
11
12
function createAnother(o) {
  var clone = Object.create(o) // 创建一个新对象
  clone.sayHi = function() { // 添加方法
    console.log('hi')
  }
  return clone  // 返回这个对象
}
var person = {
  name: 'Jiang'
}
var anotherPeson = createAnother(person)
anotherPeson.sayHi()

基于person返回了一个新对象anotherPeson,新对象不仅拥有了person的属性和方法,还有自己的sayHi方法。

在主要考虑对象而不是自定义类型和构造函数的情况下,这是一个有用的模式。

       this.friends=["gay1","gay2"];  

2.4 原型式继承

核心:原型式继承的object方法本质上是对参数对象的一个浅复制。

优点:父类方法可以复用

缺点:

  • 父类的引用属性会被所有子类实例共享
  • 子类构建实例时不能向父类传递参数

function object(o){ function F(){} F.prototype = o; return new F(); } var person = { name: "Nicholas", friends: ["Shelby", "Court", "Van"] }; var anotherPerson = object(person); anotherPerson.name = "Greg"; anotherPerson.friends.push("Rob"); var yetAnotherPerson = object(person); yetAnotherPerson.name = "Linda"; yetAnotherPerson.friends.push("Barbie"); alert(person.friends); //"Shelby,Court,Van,Rob,Barbie"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
function object(o){
  function F(){}
  F.prototype = o;
  return new F();
}
 
var person = {
    name: "Nicholas",
    friends: ["Shelby", "Court", "Van"]
};
 
var anotherPerson = object(person);
anotherPerson.name = "Greg";
anotherPerson.friends.push("Rob");
 
var yetAnotherPerson = object(person);
yetAnotherPerson.name = "Linda";
yetAnotherPerson.friends.push("Barbie");
alert(person.friends);   //"Shelby,Court,Van,Rob,Barbie"
 

ECMAScript 5 通过新增 Object.create()方法规范化了原型式继承。这个方法接收两个参数:一 个用作新对象原型的对象和(可选的)一个为新对象定义额外属性的对象。在传入一个参数的情况下, Object.create()与 object()方法的行为相同。——《JAVASCript高级编程》

所以上文中代码可以转变为

var yetAnotherPerson = object(person); => var yetAnotherPerson = Object.create(person);

1
var yetAnotherPerson = object(person); => var yetAnotherPerson = Object.create(person);

}

寄生组合式继承

在前面说的组合模式(原型链+构造函数)中,继承的时候需要调用两次父类构造函数。

父类

function SuperType(name) { this.name = name this.colors = ['red', 'blue', 'green'] }

1
2
3
4
function SuperType(name) {
  this.name = name
  this.colors = ['red', 'blue', 'green']
}

第一次在子类构造函数中

function SubType(name, job) { // 继承属性 SuperType.call(this, name) this.job = job }

1
2
3
4
5
6
function SubType(name, job) {
  // 继承属性
  SuperType.call(this, name)
 
  this.job = job
}

第二次将子类的原型指向父类的实例

// 继承方法 SubType.prototype = new SuperType()

1
2
// 继承方法
SubType.prototype = new SuperType()

当使用var instance = new SubType()的时候,会产生两组name和color属性,一组在SubType实例上,一组在SubType原型上,只不过实例上的屏蔽了原型上的。

使用寄生式组合模式,可以规避这个问题。

这种模式通过借用构造函数来继承属性,通过原型链的混成形式来继承方法。

基本思路:不必为了指定子类型的原型而调用父类的构造函数,我们需要的无非就是父类原型的一个副本。

本质上就是使用寄生式继承来继承父类的原型,在将结果指定给子类型的原型。

function inheritPrototype(subType, superType) { var prototype = Object.create(superType.prototype) prototype.constructor = subType subType.prototype = prototype }

1
2
3
4
5
function inheritPrototype(subType, superType) {
  var prototype = Object.create(superType.prototype)
  prototype.constructor = subType
  subType.prototype = prototype
}

该函数实现了寄生组合继承的最简单形式。

这个函数接受两个参数,一个子类,一个父类。

第一步创建父类原型的副本,第二步将创建的副本添加constructor属性,第三部将子类的原型指向这个副本。

function SuperType(name) { this.name = name this.colors = ['red', 'blue', 'green'] } SuperType.prototype.sayName = function () { console.log(this.name) } function SubType(name, job) { // 继承属性 SuperType.call(this, name) this.job = job } // 继承 inheritPrototype(SubType, SuperType) var instance = new SubType('Jiang', 'student') instance.sayName()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function SuperType(name) {
  this.name = name
  this.colors = ['red', 'blue', 'green']
}
SuperType.prototype.sayName = function () {
  console.log(this.name)
}
function SubType(name, job) {
  // 继承属性
  SuperType.call(this, name)
 
  this.job = job
}
// 继承
inheritPrototype(SubType, SuperType)
var instance = new SubType('Jiang', 'student')
instance.sayName()

补充:直接使用Object.create来实现,其实就是将上面封装的函数拆开,这样演示可以更容易理解。

function SuperType(name) { this.name = name this.colors = ['red', 'blue', 'green'] } SuperType.prototype.sayName = function () { console.log(this.name) } function SubType(name, job) { // 继承属性 SuperType.call(this, name) this.job = job } // 继承 SubType.prototype = Object.create(SuperType.prototype) // 修复constructor SubType.prototype.constructor = SubType var instance = new SubType('Jiang', 'student') instance.sayName()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
function SuperType(name) {
  this.name = name
  this.colors = ['red', 'blue', 'green']
}
SuperType.prototype.sayName = function () {
  console.log(this.name)
}
function SubType(name, job) {
  // 继承属性
  SuperType.call(this, name)
 
  this.job = job
}
// 继承
SubType.prototype = Object.create(SuperType.prototype)
// 修复constructor
SubType.prototype.constructor = SubType
var instance = new SubType('Jiang', 'student')
instance.sayName()

ES6新增了一个方法,Object.setPrototypeOf,可以直接创建关联,而且不用手动添加constructor属性。

// 继承 Object.setPrototypeOf(SubType.prototype, SuperType.prototype) console.log(SubType.prototype.constructor === SubType) // true

1
2
3
// 继承
Object.setPrototypeOf(SubType.prototype, SuperType.prototype)
console.log(SubType.prototype.constructor === SubType) // true

1 赞 2 收藏 评论

图片 2

}

2.5 寄生式继承

核心:使用原型式继承获得一个目标对象的浅复制,然后增强这个浅复制的能力。

优缺点:仅提供一种思路,没什么优点

function createAnother(original){ var clone=object(original); //通过调用函数创建一个新对象 clone.sayHi = function(){ //以某种方式来增强这个对象 alert("hi"); }; return clone; //返回这个对象 } var person = { name: "Nicholas", friends: ["Shelby", "Court", "Van"] }; var anotherPerson = createAnother(person); anotherPerson.sayHi(); //"hi"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function createAnother(original){
    var clone=object(original);    //通过调用函数创建一个新对象
    clone.sayHi = function(){      //以某种方式来增强这个对象
        alert("hi");
    };
    return clone;                  //返回这个对象
}
 
var person = {
    name: "Nicholas",
    friends: ["Shelby", "Court", "Van"]
};
 
var anotherPerson = createAnother(person);
anotherPerson.sayHi(); //"hi"

SuperType.prototype.getSuperValue = function () {

SuperType.prototype.sayName=function(){

2.6 寄生组合继承

刚才说到组合继承有一个会两次调用父类的构造函数造成浪费的缺点,寄生组合继承就可以解决这个问题。

function inheritPrototype(subType, superType){ var prototype = object(superType.prototype); // 创建了父类原型的浅复制 prototype.constructor = subType; // 修正原型的构造函数 subType.prototype = prototype; // 将子类的原型替换为这个原型 } function SuperType(name){ this.name = name; this.colors = ["red", "blue", "green"]; } SuperType.prototype.sayName = function(){ alert(this.name); }; function SubType(name, age){ SuperType.call(this, name); this.age = age; } // 核心:因为是对父类原型的复制,所以不包含父类的构造函数,也就不会调用两次父类的构造函数造成浪费 inheritPrototype(SubType, SuperType); SubType.prototype.sayAge = function(){ alert(this.age); }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function inheritPrototype(subType, superType){
    var prototype = object(superType.prototype); // 创建了父类原型的浅复制
    prototype.constructor = subType;             // 修正原型的构造函数
    subType.prototype = prototype;               // 将子类的原型替换为这个原型
}
 
function SuperType(name){
    this.name = name;
    this.colors = ["red", "blue", "green"];
}
 
SuperType.prototype.sayName = function(){
    alert(this.name);
};
 
function SubType(name, age){
    SuperType.call(this, name);
    this.age = age;
}
// 核心:因为是对父类原型的复制,所以不包含父类的构造函数,也就不会调用两次父类的构造函数造成浪费
inheritPrototype(SubType, SuperType);
SubType.prototype.sayAge = function(){
    alert(this.age);
}

优缺点:这是一种完美的继承方式。

  return this.property

       alert(this.name);

2.7 ES6 Class extends

核心: ES6继承的结果和寄生组合继承相似,本质上,ES6继承是一种语法糖。但是,寄生组合继承是先创建子类实例this对象,然后再对其增强;而ES6先将父类实例对象的属性和方法,加到this上面(所以必须先调用super方法),然后再用子类的构造函数修改this。

class A {} class B extends A { constructor() { super(); } }

1
2
3
4
5
6
7
class A {}
 
class B extends A {
  constructor() {
    super();
  }
}

ES6实现继承的具体原理:

class A { } class B { } Object.setPrototypeOf = function (obj, proto) { obj.__proto__ = proto; return obj; } // B 的实例继承 A 的实例 Object.setPrototypeOf(B.prototype, A.prototype); // B 继承 A 的静态属性 Object.setPrototypeOf(B, A);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class A {
}
 
class B {
}
 
Object.setPrototypeOf = function (obj, proto) {
  obj.__proto__ = proto;
  return obj;
}
 
// B 的实例继承 A 的实例
Object.setPrototypeOf(B.prototype, A.prototype);
 
// B 继承 A 的静态属性
Object.setPrototypeOf(B, A);
 

ES6继承与ES5继承的异同:

相同点:本质上ES6继承是ES5继承的语法糖

不同点:

  • ES6继承中子类的构造函数的原型链指向父类的构造函数,ES5中使用的是构造函数复制,没有原型链指向。
  • ES6子类实例的构建,基于父类实例,ES5中不是。

}

};

3. 总结

  • ES6 Class extends是ES5继承的语法糖
  • JS的继承除了构造函数继承之外都基于原型链构建的
  • 可以用寄生组合继承实现ES6 Class extends,但是还是会有细微的差别

function SubType() {

funciton SubType(name,age){

参考文章:

[1]《js继承、构造函数继承、原型链继承、组合继承、组合继承优化、寄生组合继承》

[2]《JavaScript高级编程》

1 赞 收藏 评论

图片 3

  this.subproperty = false

      SuperType.call(this,name); //第二次调用SuperType();

}

      this.age=age;  

SubType.prototype = new SuperType()

}

SubType.prototype.getSubValue = function () {

SubType.prototype=new SuperType();  //第一次调用SuperType()

  return this.subproperty

SubType.prototype.sayAge=function(){

}

      alert(this.age);

var instance = new SubType()

};

console.log(instance.getSuperValue()) // true

复制代码

代码定义了两个类型SuperType和SubType,每个类型分别有一个属性和一个方法,SubType继承了SuperType,而继承是通过创建SuperType的实例,并将该实例赋给SubType.prototype实现的。

  在第一次调用SuperType构造函数时,SubType.prototype会得到两个属性:name和friends,他们都是SuperType的实例属性.只不过现在位于SubType的原型中.当调用SubType构造函数时,又会调用一次SuperType构造函数,这一次又在新对象上创建了实例属性name和friends.于是,这两个属性就屏蔽了原型中的两个同名属性.

实现的本质是重写原型对象,代之以一个新类型的实例,那么存在SuperType的实例中的所有属性和方法,现在也存在于SubType.prototype中了。

 

我们知道,在创建一个实例的时候,实例对象中会有一个内部指针指向创建它的原型,进行关联起来,在这里代码SubType.prototype = new SuperType(),也会在SubType.prototype创建一个内部指针,将SubType.prototype与SuperType关联起来。

  结果是,有两组name和friends属性,一组在SubType的实例上,一组在SubType的原型上.这就是调用两次SuperType构造函数的结果.而现在,找到了解决这个问题的方法:寄生组合式继承.

所以instance指向SubType的原型,SubType的原型又指向SuperType的原型,继而在instance在调用getSuperValue()方法的时候,会顺着这条链一直往上找。

 

添加方法

  寄生组合式继承:通过借用构造函数来继承属性,通过原型链的混成形式来继承方法.思路:不必为了指定子类的原型而调用父类的构造函数,我们所需要的无非就是父类原型的一个副本而已.本质上,就是使用寄生式继承来继承父类的原型,然后在将结果指定给子类的原型:

在给SubType原型添加方法的时候,如果,父类上也有同样的名字,SubType将会覆盖这个方法,达到重新的目的。 但是这个方法依然存在于父类中。

 

记住不能以字面量的形式添加,因为,上面说过通过实例继承本质上就是重写,再使用字面量形式,又是一次重写了,但这次重写没有跟父类有任何关联,所以就会导致原型链截断。

function inheritPrototype(subType,superType){

function SuperType() {

      var prototype=object(superType.prototype); //创建父类原型的一个副本 等同于使用Object.create(superType.prototype)

  this.property = true

      prototype.constructor=subType;   //为副本添加constructor属性,弥补重写原型而失去的constructor属性

}

      subType.prototype=prototype; //将创建的对象(副本)赋值给子类的原型

SuperType.prototype.getSuperValue = function () {

}

  return this.property

  这样,我们就可以通过调用inheritPrototype()函数,替换前面例子中为子类原型的赋值语句了:

}

 

function SubType() {

复制代码

  this.subproperty = false

function inheritPrototype(subType,superType){

}

      var prototype=Object.create(superType.prototype); //创建父类原型的一个副本 等同于使用Object.create(superType.prototype)

SubType.prototype = new SuperType()

      prototype.constructor=subType;   //为副本添加constructor属性,弥补重写原型而失去的constructor属性

SubType.prototype = {

      subType.prototype=prototype; //将创建的对象(副本)赋值给子类的原型

  getSubValue:function () {

}

  return this.subproperty

function SuperType(name){

  }

      this.name=name;

}

      this.friends=["gay1","gay2"];

var instance = new SubType()

}

console.log(instance.getSuperValue())  // error

SuperType.prototype.sayName=function(){

问题

      alert(this.name);

单纯的使用原型链继承,主要问题来自包含引用类型值的原型。

};

function SuperType() {

function SubType(name,age){

  this.colors = ['red', 'blue', 'green']

      SuperType.call(this,name);  //继承SuperType

本文由巴黎人手机版发布于巴黎人-前端,转载请注明出处://第二次调用SuperType(),寄生组合继承基于Object

上一篇:没有了 下一篇:没有了
猜你喜欢
热门排行
精彩图文